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Abstract

Because of tight requirements on beam quality longitudinal single-bunch insta-
bilities are a serious concern for the damping rings of the next generation of
linear colliders. Unlike multi-bunch instabilities they cannot be damped using
feedback systems and need to be avoided altogether. We present an analysis of
these instabilities for the current (Feb. 03) NLC main damping ring design, with
attention paid to coherent synchrotron radiation and vacuum chamber effects,
with the latter including the main components (RF cavities, BPM’s, and resistive
wall). The study is carried out by solving the Vlasov-Fokker-Planck equation for
the longitudinal motion numerically. Comparison is made, whenever possible,
with linear theory. We find that collective effects are dominated by coherent
synchrotron radiation and estimate the instability threshold to be safely above 6
times the design current.

∗Work supported by Department of Energy contract DE-AC03-76SF00098.



1 Introduction

The NLC main damping rings (MDR) lattice was redesigned last year to increase the mo-
mentum compaction [1, 2]. This was in response to estimates of collective effects that had
placed the threshold for instability close to the working point: a larger momentum com-
paction eases the collective forces as it lengthens the bunches (therefore diluting the charge
density) and boosts Landau damping.

Coherent synchrotron radiation effects (CSR), in particular, were found to be the most
offensive. These had not been considered in the last reported survey of collective limitations,
the 1996 NLC “Zeroth Order Design” Report (ZDR) [3]. Indeed, while awareness that CSR
could cause instability is relatively old, only recently has appreciation of its dynamical effects
started to emerge – mostly as a result of the experience with designing bunch compressors
and, more recently, measurements of CSR bursts in light sources.

Our goal here is to update the study of single-bunch longitudinal collective instabilities
reported in [3] to account for CSR and the subsequent changes in the MDR lattice. A recent
assessment of CSR, including effects from both the bending magnets and wiggler insertions,
was reported in [4] but there the analysis focused mostly on the pre-February 2003 MDR
lattice with smaller momentum compaction. In this Report we update and complement [4],
by making reference to the latest MDR design and using a model of shielded impedance
for the CSR effects in the dipoles (whereas a free-space impedance model is used in [4]).
Moreover, we supplement the analytical study of linear stability with time-domain numerical
solutions of the Vlasov-Fokker-Planck equation for the longitudinal motion and fully account
for radiation damping and beam bunching.

We also analyze the collective effects rising from the vacuum chamber, with attention
paid to resistive wall, RF cavities and beam position monitors (BPM), i.e. the sources of
impedance already considered in the stability analysis reported in [3]. The overall effect of
other components (e.g. slots, masks, injection and extraction kickers, etc.) is believed to be
relatively less important and will be included at a later time.

The vacuum chamber effects are modelled by wake functions computed numerically using
3D em codes. The specific wakes used for the present study differ from those originally used
for the ZDR study as they reflect a later modification in the pipe radius from b = 1.25 cm
to 1.6 cm. Although at present the value for the prevalent ( 70%) vacuum chamber radius is
expected to be yet larger (b = 2 cm) we deemed appropriate at this stage to use the latest
available determination for wakes although carried out at the smaller (b = 1.6 cm) radius.
Bunch stability analysis of the vacuum chamber wakes was also conducted by solving the
VFP equation numerically.

The content of the paper is as follows. In the next section we remind the reader of the
basic equations for the longitudinal motion and report the dispersion relation for coasting
beams which is often used for a first assessment of linear stability. In Section 3 we review
models for radiation impedances for both dipoles and wigglers and use them to study insta-
bility. In Section 4 we study the effect of the main vacuum chamber components. Finally, in
the Appendix we apply our methods to study the effects of the vacuum chamber components
in the old 1996 MDR lattice design to make contact with the analysis reported in [3], which
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was carried out using with different tools.

MKS units are used throughout if not otherwise stated.

2 Equations of Motion and Notation

We describe the longitudinal motion using the pair of coordinates z, the position with respect
to the synchronous particle, and ∆E/E0 = (E − E0)/E0 the relative energy deviation from
the design value. We define the slippage factor as η = α− 1/γ2

0 , so that η is positive above
transition for a standard lattice design. Let T0 be the revolution time for an on-energy
particle, C the ring circumference and β0 the relativistic factor (cβ0 = C/T0). The equations
for the longitudinal motion read

dz

dt
= −cη

β0

∆E

E0

, (1)

d

dt

(
∆E

E0

)
= −eV (z)

T0E0

, (2)

where V (z) = Vrf(z) + Vc(z) is the voltage difference experienced by a particle through one
machine revolution. The term

Vrf(z) = −z
hn

Rav

V̂ cos φs, (3)

valid for small z, represents the voltage kick contributed by passage through the RF cavity
(or cavities) where V̂ is the peak RF-voltage, φs the synchronous phase, hn = ωrf/ω0 the
harmonic number, and Rav the ring average radius. For small currents only Vrf contributes to
the voltage. By combining (1) and (2), z̈ = −ω2

sz, and from (3) the resulting expression for
the synchrotron oscillation frequency is ω2

s = ω2
0(ehnV̂ |η sin φs|/2πE0β

2
0), where ω0 = 2π/T0

is the revolution frequency. For stability it is understood that η sin φs > 0. From now on we
assume, as is the case for the MDR, to be above transition, η > 0.

In addition to Vrf a particle can experience a beam induced voltage Vc resulting from
the interaction with the other particles in the bunch. The interaction can occur directly
through radiation or Coulomb forces, or can be mediated through the surrounding machine
environment (wake fields). Either way, Vc can be described in terms of a “wake potential”
function W (z − z′)

Vc(z) = −eN
∫

W (z − z′)ρ(z′)dz′, (4)

where N is the number of particles per bunch and ρ(z) the longitudinal density with normal-
ization

∫
ρ(z)dz = 1. Specifically, W (z− z′)/C has the meaning of longitudinal electric field

per unit charge (averaged along the ring circumference C) at point z due to a unit charge
located at point z′, i.e. W (z − z′) has dimensions of voltage over charge; in this paper we
set the sign of W (z− z′) by the convention that a positive value corresponds to energy gain
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Table 1: Relevant Parameters for the MDR Current (Feb. 2003) Design.

Description Notation Value
Energy E0 1.98 GeV
Rigidity Brho 6.604 Tm
Ring circumference C 300 m
Average ring radius Rav 47.75 m
Revolution frequency ω0/2π 1 MHz
Pipe radius (except wiggler sections) ba 2 cm
Pipe radius in wiggler sections bw 0.8 cm
Conductivity of pipe (Al) σ 3.5× 107 Ω−1m−1

Radius of curvature in dipoles (CSR calc.) Rd 10 m
Chamber height (CSR calc.) h 4 cm
Momentum compaction α 1.388× 10−3

Synchrotron frequency ωs/2π 11.8 KHz
Synchrotron tune νs 0.0118
Natural bunch length σz0 5.5 mm
Natural rms relative energy spread σδ0 0.975× 10−3

Longitudinal damping time τd 2.18 ms
Harmonic number hn 714

RF voltage V̂rf 2.0 MV
RF frequency ωrf/2π 714 MHz
Number of cavities 4
No. of BPM’s (tentative) 146
Wiggler period λw 0.27 m
Wiggler wave number kw 23.2711 m−1

Wiggler peak field Bw0 2.1 T
Wiggler parameter K 53
Wiggler fundamental wave number k0 4.98× 105 m−1

Total length of wiggler insertions Lw 62 m
Radius of orbit in wigglers at B = Bw0 Rw 3.3 m
Bunch population N 0.75× 1010
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(this is opposite of the definition by Chao [5], where a positive sign corresponds to energy
loss). To avoid possible confusion one should be alerted that in Refs.[4, 6, 7], W (z − z′) is
used to denote a wake potential density and has dimension of electric field per unit charge.

The frequency domain companion of the wake potential is the impedance defined as†

Z(k) = − 1

cβ0

∫ ∞

−∞
dzW (z)e−ikz. (5)

The limits of integrations can be safely pushed to ±∞ as for the wakes of interest for single-
bunch instabilities W (z) becomes negligible for |z| > zc, where zc is a small fraction of the
ring circumference.

Conversely

W (z) = −cβ0

2π

∫ ∞

−∞
dkeikzZ(k). (6)

In terms of impedance the collective contribution Vc to the voltage reads

Vc(z) = eNcβ0

∫
dkeikzZ(k)ρ̂(k), (7)

with the Fourier transform of the charge density defined as ρ̂(k) =
∫

dze−ikzρ(z)/2π.
It is often convenient to express (6) and (7) in terms of Fourier series rather than Fourier

integrals. In some way this is a more physically appropriate description because of the
natural periodicity represented by the ring circumference. However, because the latter is so
much larger than the bunch length the two descriptions are, in practice, equivalent.

We discretize the wave number k by setting k = n/R. A natural choice for R is the ring
average radius R = Rav = C/(2π), but any choice for R is legitimate as long as R is much
larger than the bunch length. In the following we will exploit this freedom. Having defined
ρn = ρ̂(k = n/R) and Z̃(n) = Z(k = n/R) the beam-induced potential difference can be
written as

Vc(z) = eNω̂0

∞∑

n=−∞
einz/RZ̃(n)ρn, (8)

where we have introduced ω̂0 = cβ0/R. Notice that in general ω̂0 6= ω0 unless R = Rav.
To make contact with the notation in [6] we re-write the equations by rescaling the dynam-

ical variables. Having introduced the natural relative energy spread σδ0 = 〈(∆E)2〉1/2/E0

(the rms spread of a bunch at equilibrium in the low-current limit) we write the relative
energy deviation in units of σδ0, p̃ = (∆E/E0)/σδ0. By choosing the arc-length position of
the bunch along the ring s = cβ0t as the independent variable we obtain for the equations
of motion:

dz

ds
= −ησδ0

β2
0

p̃, (9)

dp̃

ds
= − e

CE0σδ0

[Vrf(z) + Vc(z)] . (10)

†The minus sign is introduced so that the resulting impedance agrees with standard usage [5].
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As an alternate way to write the equations we scale z with respect with σz0, the rms bunch
length in the low-current limit, i.e. q = z/σz0. In the low current limit a bunch of electrons
in a high energy storage ring reaches an equilibrium in the form of a gaussian distribution
and the quantities σδ0 and σz0 are related by νsβ0(σz0/Rav) = |η|σδ0 where νs = ωs/ω0 is
the synchrotron tune. Keeping in mind this relationship, by using the scaled time τ = ωst
as the independent variable, and defining p = −∆E/E0, (notice the minus sign), we rewrite
the equations of motion as

dq

dτ
= p, (11)

dq

dτ
= −q + IcF (q, ρ̃(q)), (12)

where we have introduced the current parameter

Ic =
e2N

2πνsE0σδ0

, (13)

and written the collective force contribution as

F (q, ρ̃(q)) = −
∫ ∞

−∞
W̃ (q − q′)ρ̃(q′)dq′, (14)

F (q, ρ̃(q)) = ω̂0

∞∑

n=−∞
einqσz/RρnZ̃(n), (15)

emphasizing the possible use of either an impedance or wake representation of the collective
force. In the following sections we will use an impedance to model radiation effects (Section 3)
and wake potential functions to represent the interaction of the bunches with the vacuum
chamber (the pipe wall, beam position monitors, etc., Section 4).

In (15), W̃ (q) = W (z/σz0) and ρ̃(q) = ρ(z/σz0)σz0 are the wake function and bunch
density expressed in terms of the scaled longitudinal distance q. The ρn quantity defined
as ρn =

∫
dqe−inqσz0/Rρ̃(q)/2π =

∫
dze−inz/Rρ(z)/2π is the same as ρn in (8) since ρ̃(q)dq =

ρ(z)dz. It is, ρ̃(q) = (σz0/R)
∑

n einqσz0/Rρ̃n.
The beam distribution function f(q, p) in phase space evolves according to the Vlasov-

Fokker-Planck equation (16) reported below with the Vlasov part (LHS of equation) ac-
counting for RF focusing and collective effects and the Fokker-Plank part modelling radia-
tion damping and quantum excitations. With the continuing understanding that the scaling
factors for the dynamical variables σz0 and σδ0 represent the natural rms bunch and rela-
tive energy spread of a (gaussian) bunch in the low current limit, the VFP equation in the
normalized variables q and p takes the form [8]

∂f

∂τ
+

∂f

∂q
p +

∂f

∂p
[−q + IcF (q, f, τ)] =

2

ωsτd

∂

∂p

(
pf +

∂f

∂p

)
, (16)

where τd is the longitudinal damping time. By definition ρ̃(q) =
∫

f(q, p)dp. Typically one
is interested in determining stability of equilibria. Eq. (16) admits equilibria in the form
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f0(q, p) = ρ̃0(q) exp(−p2/2)/
√

2π (Häıssinski solutions) with ρ̃0(q) satisfying the Häıssinski
equation ρ̃′0 = (−q + IcF )ρ̃0.

In the following we will investigate stability by solving numerically (16) using the meth-
ods described in [8]. We start either from a Häıssinski distribution and look at the solutions
for deviation from equilibrium or we begin with a non-equilibrium distribution (say a 2D
gaussian) and integrate over a few damping times looking for convergence (or lack of con-
vergence) to equilibrium.

For some of the collective forces considered in the following, notably those deriving from
radiation effects, it is possible to derive a fairly accurate estimate the current threshold by
studying the linearized Vlasov equation and invoking the Boussard criterion. The Boussard
criterion states that if the wavelength of the unstable modes is smaller than the bunch length
and their growth time is short compared to the synchrotron period, the stability condition
is the same as for that of a coasting beam provided that peak current of the bunched beam
and current of the coasting beam be the same.

One is then led to linearize the Vlasov equation Eq. (16) with the RHS set to zero)
around the equilibrium taken as that of a coasting beam with gaussian distribution in the
energy spread. Linearization is done upon dropping in (16) the linear term in q responsible
for RF focusing. Assuming that the collective force F (q, ρ̃(q)) be expressed in terms of an
impedance the resulting linear equation yields a dispersion equation that in the normalized
variables reads‡:

Icω̂0√
2π

(
R

σz0

)2 Z(n)

n
=

i

WD(ωR/(ωsσz0n))
, (17)

where for Im Ω > 0 the function WD(Ω) is defined as the integral

WD(Ω) =
1√
2π

∫ ∞

−∞
e−p2/2pdp

p− Ω
(18)

and for Im Ω < 0 by its analytical continuation.
WD(Ω) can be expressed in terms of the so-called error function of complex argument

w(z) ≡ e−z2
erfc(−iz) ≡ e−z2

[1 + 2i/
√

π
∫ z
0 exp(ξ2)dξ]. We have W (z) = 1+iz

√
π/2w(z/

√
2)

[9].
In Eq. (17) the quantity ω is the frequency of the mode with wavelength λ = 2πR/n.

The current threshold for instability is defined as that value above which (17) admits so-
lutions with ω having a positive imaginary part (corresponding to modes with exponen-
tially increasing amplitude). Because |W (Ω)| ≤ 1 when Im ω = 0, a necessary con-
dition for the existence of unstable solutions to the linearized Vlasov equation is that
(Icω̂0/

√
2π) (R/σz0)

2 |Z(n)/n| ≥ 1. By setting the LHS of the last inequality to unity one ob-
tains a conservative estimate of the instability threshold, which is often used for a first quick
assessment (Keil-Schnell criterion). Alternate ways of writing the Keil-Schnell equation are
(β0 = 1):

‡From now on we drop the˜from the notation of Z as a function of n.
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eÎ

2π|η|σ2
δ0E0

(
R

Rav

) ∣∣∣∣∣
Z(n)

n

∣∣∣∣∣
max

= 1, (19)

N√
2π|η|σ2

δ0γ0

re

σz0

(
R

Rav

)
2

Z0

∣∣∣∣∣
Z(n)

n

∣∣∣∣∣
max

= 1, (20)

where Î = eNc/
√

2πσz0 is the peak current for a gaussian bunch of rms length σz0, re =
2.82 × 10−15 m the classical electron radius, and Z0 ' (µ0/ε0)

1/2 = 120π Ω (MKS) the
vacuum impedance.

Sometimes, instead of taking for |Z(n)/n| its maximum value for varying n the prescrip-
tion is given that |Z(n)/n| should be evaluated at a mode number n corresponding to a
wavelength comparable to the bunch size, i.e. k ' 1/σz0 or n = 2πR/λ ' R/σz0. The
corresponding Keil-Schnell equation then would read:

√
2N√

π|η|σ2
δ0γ0

re

Rav

|Z(n = 2R/σz0)|
Z0

= 1 (21)

Because the Keil-Schnell equation in the form (21) or variations thereof§ is often applied
to bunched beams well beyond the conditions of validity of the Boussard criterion, it will
be interesting in the following to compare its predictions against the more accurate analysis
discussed in this Report.

Outside the domain of applicability of the Boussard criterion and short of solving the VFP
in time domain, evaluation of the current threshold from the linearized Vlasov equation for
bunched beams requires a more sophisticated treatment involving the expansion of the bunch
distribution in azimuthal and radial modes. There are codes carrying out this procedure
[10] that have been used successfully. However, problems of convergence with the order
of truncation of the mode expansion have occasionally been experienced [11] casting some
reservations on the general reliability of the method. An improvement on the mode-expansion
analysis using slightly different methods are currently underway [12, 13] and will also be
applied to the MDR in the next future.

3 Radiation Impedances

Although experimental evidence is relatively new, emission of coherent synchrotron radiation
by electron beams in electron storage rings has since long been predicted. More recent is
the realization that CSR can cause harmful longitudinal instabilities. The physics of this
instability is well understood being essentially the same mechanism behind the functioning of
the free electron lasers. In a curved trajectory radiation emitted from trailing particles within
a bunch can overtake particles in the front. While incoherent SR radiation has negligible
effects, under the right conditions the forces exerted by the coherent part of radiation can
become noticeable. Much of the low-end of the radiation spectrum is suppressed by the

§Sometimes it is suggested that one should take the average of |Z/n| over the bunch spectrum.
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metal shielding of the vacuum chamber but radiation with frequency above shielding cut-off,
typically corresponding to a wavelength of the order of the bunch length or smaller, will
cause a charge modulation on the bunch with the same wavelength if the beam current is
sufficiently large. In turn, this charge modulation will act as source of radiation at that
wavelength and initiate a feed-back process that can rapidly lead to a disruption of the
initial bunch distribution.

The shielding cut-off becomes effective for wavelengths larger than

λ0 = 2h(h/R)1/2 (22)

where h as the vacuum chamber height and R the radius of curvature of the particle orbit.
This is smaller than the usual waveguide cut-off by the factor (h/R)1/2. In the model
used to derive this expression - the one that will be used in this section to estimate the
CSR impedance in the bending dipoles - shielding is approximated by a pair of perfectly
conducting parallel plates at distance h and the particles are assumed to follow a circular path
of radius R. Estimates for alternate geometries of the vacuum pipe cross-section (rectangular,
circular ...) differ by a numerical factor of order unity upon a suitable interpretation of h as
representing the transverse dimension [14]. The same parallel plate model yields an estimate
of the maximum real part of the radiation impedance Re Z(n)/n as

Re Z(n)

n

∣∣∣∣∣
max

' Z0
h

R
e−π/3 ' 132.3

h

R
(Ω). (23)

The maximum occurs at nmax ≡ 2πR/λmax = π
√

2(R/h)3/2 or λmax = λ0/
√

2. By
contrast, at λ = λ0, with λ0 as defined above or n0 = π(R/h)3/2, the ratio Re Z(n)/n is
70% of its peak value. For λ = (π/

√
2)λ0, one finds that Re Z(n)/n is less than 10−3 times

its maximum. For all purposes this latter expression can be taken as definition a critical
wavelength above which radiation is effectively zero.

A closed form expression for the complete CSR impedance can be written for the parallel
plate model in terms of series of Bessel functions.

Z(n, ω) = Z0
(πR)2

β0h

∞∑

p=1

Λp ·

ωβ0

c
J ′|n|H

(1)′
|n| +

(
αp

γp

)2
n

R
J|n|H

(1)
|n|


 . (24)

Here H(1)
n = Jn + iYn, where Jn and Yn are Bessel functions of the first and second kinds,

αp = πp
h

, γ2
p = (ω

c
)2 − α2

p. The argument of the Bessel functions is understood to be γpR.
The sum on p corresponds to modes in the Fourier expansion with respect to the vertical
dimension y. The factor Λp depends on but is not very sensitive to the detailed profile of the
vertical beam distribution H(y). For this study we used a square step distribution constant
for y ∈ [−δh , δh] and zero otherwise, we have Λp = 2(sin(x)/x)2, x = αpδh/2 for odd p
and zero for even p. As δh is very small compared to h, Λp depends very weekly on δh.

We termed ’complete impedance’ the quantity Z(n, ω) with distinct dependance on fre-
quency and mode number. What is usually called impedance and used in the calculation of
dynamics is Z(n, ω) evaluated at ω = nω̂0, Z(n) = Z(n, nω̂0) where ω̂0 = β0c/R. By doing
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Figure 1: Real (figure to the left) and imaginary (figure to the right) part of the CSR
impedances Z(n) due to dipoles only with (solid red lines) and without (dashed red lines)
shielding. The wiggler impedance is for free space but the real part was multiplied by an
attenuation factor to model shielding effects, as explained in the text.

so one neglects some of the retardation effects associated with radiation emission. The idea
behind this approximation is that only components of the electric field having phase velocity
close to particle velocity will have appreciable effects on the beam.

We modelled the action of CSR in the MDR dipoles by using (24) with R = Rd interpreted
as the local radius of curvature of the particle orbit in the bends. In other words, the CSR
induced potential is calculated as if the particles followed a circular path of radius Rd. While
we expect that this approximation will give an acceptably accurate estimate of the potential
difference due to CSR over one turn, transition effects as the bunches enter and exit the
dipoles are obviously lost in this model.

In the MDR lattice most of the bending (323.70) takes place in the 2 m length dipoles
in the arc cells, with 20.18 mrad bend angle and 10 m radius of curvature. Additional
bending (total of 46.30) takes place in the dipoles providing the matching into the straight
sections (1.8 m length, 10.09 mrad bending angle, 18 m radius of curvature). The bending
excess (323.70 + 46.30) − 3600 = 100 is compensated by a small offset of the quadrupoles
in the arc cell. In our calculation we assumed for Rd the value of the prevalent radius of
curvature i.e. Rd = 10 m without trying to account for the larger values in the matching
dipoles and erring on the conservative side as a larger Rd tames CSR effects (see (23)). We
accounted for shielding by the 2 cm radius pipe by setting h = 4 cm. With this choice of
parameters we have λ0 = 5.0 mm (wavelength where fields start to roll off due to shielding),
(π/

√
2)λ0 = 11.2 mm (wavelength above which radiation is effectively zero), and λmax = 3.5

mm (wavelength where Re Z(n)/n is maximum.
Plots of the real and imaginary part of the radiation impedance Zd due to the dipole

impedance with the parallel plate model are reported in the pictures of Fig. 1 (solid red
lines). For comparison we also plotted the free-space radiation impedance [6, 15] (β0 = 1):

Z free
d (k) = Z0

Γ(2/3)

31/32
(
√

3 + i)(kRd)
1/3 (25)

with k = n/Rd. This expression is related to the expression Ẑ free
d (k) reported in [6] by
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Figure 2: Real (figure to the left) and imaginary (figure to the right) part of the CSR
impedance Z(n)/n due to dipoles only (red lines) and dipole + wigglers (blue lines).

Z free
d (k) = (Z0c/4π)(2πRd/c)Ẑ

free
d (k). One can observe that the shielded approaches the un-

shielded impedance for high frequencies as the vacuum cross section becomes large compared
to the radiation wavelength and the two are essentially the same for wavelengths smaller than
1 mm.

In the MDR wiggler insertions are responsible for most of the radiation loss and one
would expect a significant contribution to the overall CSR effects. While CSR effects due to
wigglers are indeed noticeable the corresponding impedance at low frequency – relevant for
stability analysis, turns out to be a relatively small fraction of that associated with radiation
emission in the dipoles.

In estimating the effect of wigglers we make use of the low-frequency limit for the radiation
impedance per unit length in an infinitely long insertion reported in [7], Eq. (26)

Ẑw = πkw
k

k0

[
1− 2i

π
log

(
k

k0

)]
(cgs units), (26)

where kw = 2π/λw, is the wiggler wavenumber, λw is the period, k0 the fundamental wave
number, k0 = 2γ2

0kw/(1 + K2/2), with γ0 being the relativistic factor and K ' 93.4Bw0λw

the wiggler parameter; Bw0 is the wiggler peak field.
We should recall that the quantity (26) as given by J. Wu et al. is not an impedance in

the sense of Eq. (5), having been defined as the Fourier transform of the longitudinal electric
field per unit charge (not of the wake potential). The conversion from Ẑw to the conventional
expression is

Zw(n) = Lw
Z0c

4π

1

β0c
Ẑw(k)

∣∣∣∣∣
k=n/Rd

(MKS units), (27)

where Lw is total length of the wiggler insertions. For comparison with the CSR dipole
impedance, we chose to express the wave number k = 2π/λ = n/R with respect to the
radius R = Rd. Recall that any choice for R is legitimate: a different value for R would
merely redefine the meaning of the mode number n.

For the purpose of stability analysis use of the limiting low-frequency expression (26) is
adequate. Comparison against a numerical calculation [7] shows that (26) is accurate for
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Figure 3: Keil-Schnell beam stability diagram in the presence of CSR impedance alone. The
dashed curve delimits the stability region (the area including the origin). The solid curves
represent IcZ(n)/nI0 for varying mode number n at threshold, where I0 =

√
2π(σz0/R)2/ω0.

The blue (red) line includes the contribution from both dipoles and wigglers (dipoles only).
The critical number of particles/bunch for stability is also reported for the two cases. The
mode number n = 24130 (corresponding to a wavelength λ = 2 mm) is in the vicinity of the
modes that go unstable at the crossing of current threshold.

k ≤ 0.1k0. As k0 ' 5 × 105 the above expression is expected to be accurate for wavelength
λ larger than 0.1 mm. This is much smaller than λ ' 2 mm of the unstable modes that we
found at the crossing of threshold, suggesting that use of (26) is appropriate when doing the
linear analysis and is comparable to (although still smaller than) the resolution (about 0.16
mm) of a typical 400× 400 phase-space grid we used in the VFP solver.

A limitation of (26) is that it does not account for shielding effects. One would expect that
an attenuation of radiation exponential with the wavelength around a cut-off comparable
to (22) would apply to SR emission from a wiggler as well. For the analysis presented
in this Report we multiplied the real part of Zw(n) by an attenuation factor of the form
[tanh (6.8(n− nw0)/nw0) + 1]/2 where the numerical value 6.8 was chosen to give a slope
comparable to that of Re Zd and nw0 = π(Rw/hw)3/2 is a mode-number cut-off written in
analogy with the dipole mode-number cut-off n0, with h = 1.6 cm and Rw = 3.3 m being
the radius of curvature of the orbit in the wiggler in correspondence to the wiggler magnetic
field peak value Bw0. The corresponding wavelength λw0 = 2πRw/nw0 = 5.6 mm.

In analogy with the dipole CSR impedance one would expect that the effect of shielding
on the imaginary part of the wiggler impedance be somewhat more complicated than the
exponential attenuation experienced by the real part. In our calculations we will make no
attempt to account for shielding on Im Zw(n) and content ourselves with the expression (27)
in free space. In doing so we will likely overestimate Im Zw(n) for small n. While this should
have no direct impact over the linear stability analysis (the unstable modes are shown to
have wavelength of about 2 mm where the free space approximation for the impedance is
more accurate as it is well below the shielding cut-off wavelength λw0 = 5.6 mm,), there
is an indirect but small effect through potential well distortion. Indeed, we find that the
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Figure 4: Figure on the left: bunch equilibrium in the presence of the sole CRS impedance for
N = 5.1×1010 (slightly above threshold) The dashed line represents the gaussian equilibrium
in the zero-current limit. Figure on the right: evolution of the relative energy spread in
units of natural relative energy spread, σp = σδ/σδ0, for varying bunch population N in the
presence of CSR (from both dipoles and wigglers) and starting from a Häıssinski equilibrium.
The critical N for instability is in the range N = 5.02− 5.05× 1010.

reactive part of the free-space wiggler CSR impedance causes a few percent decrease in the
rms length of the bunch equilibrium or correspondingly a few percent increase in the peak
current value. This distortion, if not physical, would lead to a more pessimistic estimate of
the threshold for instability by the same relative amount of few percent.

A Häıssinski equilibrium in the presence of CSR effects alone is shown in the left picture
of Fig. 4 for a current just above instability threshold. The profile is symmetric – a reflection
of the fact that only the imaginary part of the impedance is contributing to the distortion
as the low frequency part of ReZ is cut off by shielding.

We determined the current threshold for instability from the linear Vlasov equation by
constructing a Keil-Shnell diagram as shown in Fig. 3. The stability boundary (dashed line
in the picture) corresponds to the parametric plot of the RHS of Eq. (17) obtained by setting
Im ω = 0 and letting Re ω vary from −∞ to +∞. In the same picture we also report the
curves corresponding to the LHS of (17) for varying mode number n for the case in which
only CSR from the dipoles is included Z = Zd (red line) and the case with both dipoles and
wigglers contributing Z = Zd + Zw (blue line). The fact that the two curves are tangent
to the stability boundary qualifies the corresponding values for Ic as the critical current
parameter for instability. In terms of number of particles per bunch we found N = 4.8×1010

to be the critical value for the case Z = Zd + Zw. This estimate is for the peak current of
a σz0 = 5.5 mm gaussian bunch. Accounting for the increase in the peak current due to
potential well distortion would lower the estimate to about N = 4.5× 1010. The same linear
analysis also predicts that the wavelength of the modes that first go unstable at the crossing
of threshold is λ ' 2 mm, about a factor 2 smaller than the cut-off wavelength λ0.

Numerical solutions of the VFP equation starting from a Haissinki equilibrium place the
estimate of the instability threshold in the range N = 5.02 − 5.05 × 1010, a value about
10% larger than the one resulting from the linear analysis (after accounting for the bunch
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used in the present study (red lines) and those used for the study reported in the ZDR for
NLC [3].

distortions). We attribute the difference to the effect of finite bunch-size (recall that Eq. (17)
was derived under the costing-beam approximation). Previous numerical work showed that
the VFP solver used in the calculation very accurately reproduces the value predicted by
the linear theory when applied to coasting beams [8]. The presence of instability is detected
by looking at variation over time in the rms energy spread starting from an equilibrium
distribution. The growth rate for a CSR driven instability is relatively fast and develops
very quickly (within a couple of synchrotron periods) for currents just above threshold (see
Fig. 4).

A cruder but still not too far-off estimate can be obtained from the Keil-Schnell equa-
tion (20). On the assumption that we can neglect the contribution from the wigglers and
|Z(n)/n| ' |Re Z(n)/n|max ' Z0e

−π/3h/R, (see Eq. (23))

Nthr ' 3.6
(

Ravσz0

reh

)
|η|σ2

δ0γ0 = 4.2× 1010, (28)

where the numerical factor is eπ/3
√

π/2 ' 3.6. This threshold value is about 25% smaller

than N = 5.5 × 1010, the value derived by accurate solution of (17) when the wiggler CSR
is neglected (Fig. 3, red line). Note that, interestingly, the above simplified criterion of
instability does not depend on the radius of curvature - only the average machine radius.

A comparison with [4] shows that the estimate presented there is somewhat more pes-
simistic. Because in [4] the impedance is unshielded there is no clear identification of the
wavelength of the unstable modes. A conservative choice as made in [4] is to suggest for the
critical wavelength the shielding cut-off λ0, for which the reported estimate of the threshold
is N = 3.3 × 1010¶. However at λ = λ0 the unshielded |Z/n| is noticeable larger than the
shielded |Z/n| at λ = 2 mm where our analysis places the critical wavelength - hence ex-
plaining our more optimistic estimate of the threshold. There is, of course, a certain degree
of uncertainty about the accuracy of the parallel-plate model used in our calculation, which

¶This is in the presence of dipole CSR only. Our estimate for this case is N = 5.5× 1010.
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the model of RW wake function used in the present calculations. Notice the different scales
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possibly is only a rough approximation of the actual shielding effect provided by the vac-
uum chamber. It is conceivable that the value provided here and that reported in [4] may
represent the high and low end of a likely range for the instability threshold.

4 RF Cavities, BPM’s, and Resistive wall

In evaluating the collective effects by the vacuum chamber for the present study we included
the RF cavities, BPM’s, and resistive wall.

The wake functions for the cavities and BPM were calculated by Cho Ng using MAFIA
[16]. The design of these components was based on the design reported in [3], to which we
refer for a description, except for the a larger value of the pipe radius (from b = 1.25 cm
to b = 1.6). The wake functions were computed by evaluating the longitudinal electric field
driven by a finite size (1-mm rms gaussian) rigid charge source. As a result causality is
violated and the wake functions are non-zero for z > 0. We did not attempt in our study to
restore causality by artificially removing (or moving) the z > 0 part of the wake as there is no
clear prescription for doing so.‖ A sensible thing to do in future studies would be to produce
wakes generated by shorter bunches and look for convergence of results when looking at the
dynamical effects on beams. A sensitivity study where artificial perturbations are added to
the computed wakes could also be useful. However, there exist already calculations [11] for
earlier design of the MDR vacuum chamber components showing that wakes computed from
a 0.5 mm driving bunch do not yield significantly different assessment of beam dynamics.
The plots for individual RF cavity and BPM are reported in Fig. 5. Unfortunately, the
wake data currently available are truncated beyond about 15 cm behind the bunch center.

‖We did, however, tried a wake function modified to restore causality in a study of the old MDR 1996
lattice, which was carried out for comparison with previous investigations – see the Appendix.
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To avoid possible high frequency effects due to the truncation and preserve smoothness we
artificially added a fast decreasing exponential tail (not shown in Fig. 5, but included in the
left picture of Fig. 7 where the overall contribution of the 146 BPM’s and 4 RF cavities is
reported).

As for resistive effects, we made use of the existing analytical formula [5] for an infinitely
long, straight vacuum chamber with circular cross section of radius b. The longitudinal
electric field caused by the finite conductivity of the pipe wall at z < 0 due to a charge e at
z = 0 is given by

Erw
z (z, b) = −4Z0ce

πb2

(
1

3
eu cos(

√
3u)−

√
2

π

∫ ∞

0

x2eux2

x6 + 8
dx

)
for z ≤ 0, (29)

with u = z/(2χ)1/3b and χ = 1/Z0σb where σ is the conductivity of the vacuum chamber.
For Aluminum at room temperature σ = 3.5× 107 Ω−1m−1.

As it is expected that the vacuum chamber in the straight Lw = 62 m sections accommo-
dating the wiggler insertions will be significantly narrower than in the rest of the machine
(b = bw = 0.8 cm vs. b = ba = 2 cm) we wrote the resulting wake function for the resistive
wall as the sum of the two contributions

W rw(z) = LwErw
z (z, bw)/e + (C − Lw)Erw

z (z, ba)/e, (30)

(obviously W (z) = 0 for z > 0). The plot of (30) together with that of the two components
indicated in the RHS is reported in the left picture of Fig. 6.

We did not, however, use directly (30) in our calculation but we first convoluted it with
a 1-mm rms gaussian source in analogy with the way the wake functions for the other
components of the vacuum chamber were determined. We thought this to be justified after
a comparison between a calculation of beam dynamics done with the wake as in (29) and a
calculation done with the above-mentioned convolution. No other sources of collective effects
were included. The only noticeable dynamical effect found was potential well distortion while
no instability was detected up to the largest bunch population considered (N = 150× 1010).
At the largest N the two resulting bunch profiles while looking very non-gaussian were
nonetheless very similar to each other.

For fast evaluation in the VFP solver we tabulated the integral on the RHS of (29) for
|u| ≤ 6 and used a 3rd order interpolation, while for |u| > 6 we used an approximation re-
taining the first two terms of its asymptotic expansion (keeping more terms in this expansion
turns out to make the approximation worse for moderate |u|):

∫ ∞

0

x2e−|u|x
2

x6 + 8
dx '

√
π

32
|u|−3/2 +

105
√

π

2048
|u|−9/2. (31)

The resulting approximation was found to yield a relative error of 10−3 or smaller.
The profile of the total wake function summing up the contribution from 4 RF cavities,

146 BPM’s, and the resistive wall contribution (convoluted wake) is shown in Fig. 7. For
sake of completeness we also report the corresponding impedance obtained by taking the
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Fourier transform of the wake in Fig. 7 although no use of such an impedance was made to
calculate the beam dynamics.

In studying stability with the VFP solver we started with initial gauss distributions
far from equilibrium (with rms length and relative energy spread two time larger than the
natural values in the zero current limit) and we let them evolve over several damping times.
This is more time consuming than starting from a Häıssinski equilibrium but was necessary
because the algorithm used to solve the Haissinki equation failed to converge for currents at
which instability takes place.

As in the previous section we detected instability by inspecting the evolution of the rms
energy spread over time. In a situation of equilibrium σδ converges to the natural value σδ0

as a result of radiation damping. Above threshold damping is interrupted by sudden jumps
(see right picture in Fig. 9). The thick bands visible in the picture are the envelope of rapid
quadrupole-like oscillations that are triggered by the instability. Our numerical estimate for
the threshold is a fairly large N = 133 − 136 × 1010, more than two orders of magnitude
above the design value.

Variations in the numerics of the VFP solver (mesh size, time step) were not found to
cause significant deviations in the solutions.

Before ending this section we examine the threshold as predicted by the simplified equa-
tion (21). One finds that the vacuum chamber impedance evaluated at k = 1/σz0 or
λ−1 = 1/2πσz0 = 0.029 mm−1 is about |Z| ' 420 Ω with relatively little variation (270−500
Ω) over the range of the bunch spectrum. With this value for the impedance in (21) we find
an estimate for the threshold N = 9.7×1010 about 15 times smaller than the value obtained
from numerical solution of the VFP equations. Needless to say such a large discrepancy
makes use of (21) dubious at the very least.

To make contact with conventional notation we report the value |Z/n∗| at k = 1/σz0

where n∗ = Rav/σz0 ' 8700 is the usual mode number expressed in terms of the average ring
radius. We have |Z/n∗| ' 0.05 Ω.

5 Conclusions

The main result of our study is a confirmation that instability thresholds for the new MDR
Feb. 03 lattice should be safely above the nominal current of 0.75× 1010 particle/bunch.

As a result of the increased momentum compaction and bunch length the instability
driven by the main components of the vacuum chamber (RF cavities, BPM’s, and resistive
wall) is expected to appear only at exceedingly large current (more than two order of mag-
nitude larger than nominal value). No detectable potential well distortion is expected at
nominal current either.

More severe but still acceptable limitations are set by coherent radiation effects, mostly
from emission occurring in the bending magnets, as wigglers contribute much of incoherent
but only a small portion of coherent radiation. We find an instability threshold about 6
times the design beam current – marginally larger than the estimate reported in [4]. We
believe this value to provide a safety cushion sufficient to counter the uncertainties carried
by the model used to calculate the CSR effects.
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Table 2: Relevant Parameters for the MDR 1996 Design.

Description Notation Value
Energy E0 1.98 GeV
Rigidity Brho 6.604 Tm
Ring circumference C 223 m
Average ring radius Rav 35.49 m
Revolution frequency ω0/2π 1.345 MHz
Pipe radius (except wiggler sections) b 1.25 cm
Momentum compaction α 4.65× 10−4

Synchrotron frequency ωs/2π 5.147 KHz
Synchrotron tune νs 0.00382
Natural bunch length σz0 3.9 mm
Natural rms relative energy spread σδ0 0.9× 10−3

Longitudinal damping time τd 2.5 ms
Harmonic number hn 532

RF voltage V̂rf MV
RF frequency ωrf/2π 714 MHz
Number of cavities 2

6 Appendix: Stability Study for the 1996 Lattice De-

sign

Stability analysis in the study reported in [3] was carried out by analyzing the linearized
Vlasov equation for bunched beams using the mode decomposition method as implemented
in Oide’s code [10]. We thought it would be interesting to carry out a cross validation against
the methods used in our investigation by applying our VFP solver to the old MDR design.

Only the vacuum chamber wakes were considered.
From the perspective of this study the main differences between the 1996 and current

MDR lattice are in the momentum compaction (now larger by about factor 4) and ring
circumference (now 300 m vs. 220 m). For a list of other relevant parameters see Table 2.
The new lattice is expected to have a larger number of BPM’s and RF cavities; a longer
circumference would also enhance resistive wall effects. However, the contribution of the
individual components is smaller in the new ring because of the larger pipe radius. As a
result, the total wake functions in the two cases look similar (compare Figs. 7 and 10).

When applied to the wake function shown in Fig. 10 our VFP solver shows a threshold
located just below N = 10× 1010 (see Fig.11).

The study reported in [3] mentions a range of values for instability threshold as the total
wake was modified in different ways in an attempt to restore causality. A strong instability
is reported in the range N = 7 − 8 × 1010 and the presence of “slow” instabilities is also
detected for a number of particles as low as N = 1.65× 1010 for the “ capacitive” model of
wake function. By “capacitive” model the authors of [3] mean a modification of the original
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Figure 10: NLC 1996 main damping ring design. Wake function (figure on the left) comprises
RW, cavities, and BPMS. The corresponding impedance as a function of the inverse of
wavelength is reported in the figure on the right.

wake function as shown in the left picture of Fig. 10, that removes the z > 0 part by folding
it symmetrically behind the ordinate axis [11]. In Oide’s code [10] the calculation does not
include the taming effect of radiation damping, which is accounted for “by hand”. The
current threshold is defined as that value at which the growth rate of the most unstable
collective mode equals the inverse of the radiation damping time. As a result the values
quoted in [3] should be directly comparable to the estimates reported in the present report.
However, we also did some runs excluding the Fokker-Planck part of Eq. (16). For the old
1996 Lattice design, these runs place the threshold for instability in the range 8.25−8.5×1010

particles/bunch (vs. N = 10× 1010 when radiation damping is included).
We also repeated our calculation using the same “capacitive” approximation of the wake

function as explained above. We found that the modified wake gives a noticeable more
pessimistic estimate of the instability threshold which appears to be located close to N =
5 × 1010 when radiation damping is excluded and close to N = 6.5 × 1010 when radiation
damping is included. In [3] the threshold for the strong instability in this case was N =
7× 1010.

For the study discussed in this section we adopted the operational definition of instability
as causing an increase of at least about 0.5% in relative energy spread (starting from equilib-
rium) in about two damping times (one damping time corresponds to about 12 synchrotron
periods). At present in our study we did not make an attempt to investigate the nature
(“weak” vs. “strong”) of the instability by looking at the dependence of growth rate as a
function of current. A closer comparison between the outcome from the VFP solver and
analysis of the linearized Vlasov equation is in our plans for future work. At this point we
content ourselves with the observation that the disagreement we find is within an accept-
able range - considering the relatively large gap that the new lattice design places between
operational current and estimated instability threshold.
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